私流の光学系アライメント


 我々は,光学定盤の上にミラーやレンズを並べて,光学実験を行う.実験結果の質は,アライメントによって決まる.しかし,アライメントの方法について書かれた書物はほとんどない.多くの場合,伝統の技(研究室独自の技)と研究者の小さなアイデアの積み重ねでアライメントが行われている.アライメントの「こつ」や「ひけつ」を伝えることは難しいが,私の経験から少しお話をさせて頂きたい.具体的には,「光フィードバックシステム1)の光学系をとりあげる.学会の機関誌という性質上,社名や品名を挙げ難い.その分,記述の歯切れが悪い.そのあたり,学会等で会った時に遠慮なく尋ねて欲しい.

 図1は,実験光学系である.レンズの焦点距離やサイズ,ミラーの反射特性等の光学部品の選定は,実験成功のキーであるが,ここでは,光学部品は既に揃っており,並べるだけの段階であるとする.主に,レーザーのようなビームを伝搬させる光学系と光相関器のような画像を伝送する光学系とでは,光学系の様相が大きく異なるが,アライメントの基本は変わらない.ここでは,レンズ設計ソフトウェアを使って,十分に収差を補正された多数のレンズからなる光学系ではなく,2枚のレンズを使った4f光学系を基本とする画像伝送の光学系について議論する.4f光学系のような単純な光学系でも,原理実証実験には非常に有効である.

 では,アライメントを始める.25mm間隔でM6のタップを有する光学定盤にベースプレートで光学部品を固定する.ベースプレートの使用理由は,マグネットベースよりもアライメント後のずれを少なくすることや光学系の汚染源となる油や錆を出さないことに加えて,アライメントの自由度の少なさである.光軸とレンズ中心を一致させるなど,正確なアライメントを行わないとうまくいかない.うまくいくかいかないかが,デジタル的になることである.一方,光学定盤のどこにでもおけるマグネットベースを用いると,すこし得られる像が良くないといったアナログ的な結果になる.アライメント初心者ほど,ベースプレートの使用を勧める.ただ,光学定盤に対して,斜めの光軸が多く存在するような光学系は,ベースプレートではアライメントしにくい.任意の位置に光学部品を配置できるベースプレートが,比較的安価に手に入るようになったので,うまく組み合わせて使うと良い.



図1 光フィードバックシステム

 図1の光学系を構築する.まず始めに行うことは,He-Neレーザーから出射された光を,ビーム径を広げ,平面波となるようにコリメートしたのち,特定の高さで,光学定盤と並行にすることである.これが,高さの基準になるので,手を抜いてはいけない.長さ30cmのL型定規2本と高さ55mmのマグネットベース2個を用意する.図2のように配置する.2つの定規を異なる方向で置き,2つの定規は,見える範囲でできるだけ離す.レーザービームが,同じ高さに,同じぐらいかかるように,レーザーの位置と傾きを調整する.これから,構築するコリメータのすぐ後あたりに,微動調整可能な虹彩絞りを置く.コリメータ配置後のビームセンターの基準となる.また,2本目のL型定規の位置にも,虹彩絞りを置く.これは,コリメータの位置を決定するために用いる.使用する全ての光学部品にこのレーザービームをあて,反射や透過されたビームの高さが変わらないように光学部品の高さや傾きを調整する.

 次に,対物レンズ(OL)とピンホール(PH1)を有する空間フィルタホルダー(SFH)とレンズ(L1)によるコリメータを構築する.PH1の穴径は,OLの開口数からの計算値だとうまくいかない.特にレーザーとOLの距離が近いと,OLの開口径よりビーム径が細い.これに気が付くのには,結構,時間を要した.先に,L1を所定の位置に置き,その後,SFHを置く.L型定規2本を用いて,拡大されたビームが同じ高さで,L型定規に同じぐらいかかるように,SFHの高さや方向,PH1の位置を調整する.このとき,虹彩絞りを最小径まで閉じて,はじめの虹彩絞りから出たビームが2つめに虹彩絞りのセンターを通過するかを確認する.L1とOLの位置関係が,適切になるように,L1とSFHの配置を何度か繰り返す.コリメートが正しく行われているかの確認方法は,ミラーで光を反射させて元に戻し,ピンホールの背面の穴のすぐ横に集光させる方法である.このとき,L1の位置を光軸方向に変化させて,PH1の背面に集光されていれば,キラッとひかる感じがする.これでも,十分でないかもしれない.特に,コリメート後のビーム径の小さい時は,ビームウエストが長いため,キラッの領域が広い.コリメートチェカーを使う方法もあるが,経験さえ積めば,必要ない.私は,「キラッとひかる範囲のまんなかあたり」という合わせ方をしている.なお,レーザー光が眼に直接入らないように注意して欲しい.



図2 アライメントの方法

 次に,アパーチャ(AP)から液晶空間光変調素子(LCSLM)までの位置合わせについて述べる.パターン形成がエッジに影響されるので,パターンの発生の領域を正確に規定するために,APとL2,L3の結像光学系は必要となる.また,LCSLMに照射される光強度を正確に決定できる.L2とL3の4f光学系は,光軸をずらさないように,L2を固定して,L3を光軸方向に移動して調節する.この場合,ビームを遠くに飛ばす方法と集光面においたピンホールPH2を用いて,ミラー(ここではLCSLMがミラーの代わりをする)で光を反射させる方法を用いる.戻り光によるレーザーの不安定化を避けるため,LCSLMは,(ほんの少しだけ)傾けられ,戻り光がPH2で遮られるようにする.また,PBS1の端面の反射による出力上に現れる干渉縞を避けるため,PBS1も少しだけ傾ける.ここまでで,慣れている私でも,うまくいって3時間はかかる.

 次に,PBS1からCCDイメージセンサーの光学系について述べる.PBS1とPBS2の間の半波長板(HWP)で,偏光を回転し,ほとんどの光がフィードバック光学系の方に向かうように調節する.L8とL9は,同様に結像系を組む.これらのレンズは,それほど神経を使って合わせる必要はない.CCDイメージセンサーをLCSLMの結像面に置く.LCSLMの結像面の探し方は,LCSLMに画像を入力すればよい.カメラを光軸方向にずらしながら観察すると,液晶層を確認でき,画像の入力なしに結像関係を合わすこともできる.その後,APを動かして結像させる.

 紙面の関係で,フィードバック光学系のアライメントについては触れることはできなかった.基本的には,L型定規2本と微動調整可能な虹彩絞り(この光学系では6個程度用意する)を各4f光学系の前後で使って,丁寧に合わせていくだけである.ただし,この光学系の特有なことであるが,サブ波長程度の光軸のずれによって,パターンが流れる2)ので,何度も繰り返しアライメントをする必要がある.

 今回は,アライメントについての話に限定したので,どのレンズを使うか,どのミラーを使うかなど,光学部品の仕様の決定については詳しく示せなかった.実は,光学系構築の醍醐味の1つは,この光学部品の選定にある.いつかお話しできる機会があればいいと思う.(早崎芳夫)


文献

1) Y. Hayasaki, H. Yamamoto, and N. Nishida, J. Opt. Soc. Am. B 17, 1211-1215 (2000).

2) Y. Hayasaki, Y. Yuasa, H. Yamamoto, and N. Nishida, Optics Commun. 220, 281 - 287 (2003).


光学 Vol. 35, No. 10, pp. (2006)「光学工房」より